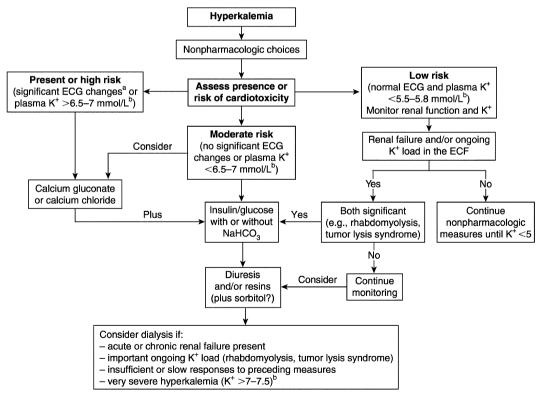
1266 Fluid and Electrolyte Disorders

iv has a rapid onset but relatively short duration of action and should be administered simultaneously with other treatments.


Redistribution Agents

These agents act for a longer period than membrane antagonists. Stimulation of insulin and beta receptors as well as correcting acidosis facilitates the reuptake of K⁺ into cells.

Insulin should be the first choice since it is the most effective and reliable agent. Insulin must be administered iv.² **Glucose** (40–50 g per 10 units insulin) is given to avoid hypoglycemia, but avoid bolus administration because an acute increase in plasma tonicity can induce a rise in plasma K^+ . Expect a 1–1.5 mmol/L fall in plasma K^+ in 60 minutes.

Sodium bicarbonate (NaHCO₃) is usually reserved for hyperkalemia associated with significant metabolic acidosis. It has a synergistic effect with insulin in the presence of mild acidosis.³ In the absence of low serum bicarbonate concentration or pH, sodium bicarbonate has a smaller effect.⁴ To avoid an acute increase in plasma K⁺ induced by an osmolality change, hypertonic NaHCO₃ solutions should not be used.⁵ The correction of acidosis in hypocalcemic patients may induce tetany. Insulin administration is faster, more reliable and more effective than sodium bicarbonate.²

Figure 1: Management of Hyperkalemia

a Loss of P waves, widening of QRS complexes or more severe changes are considered significant. Isolated peaked T waves may not be significant. Note that ECG changes have uncertain prognostic significance.

b Plasma potassium level is given as a guide; therapy should not rely on the plasma level alone, but consider all other risk factors for cardiotoxicity (see text). Abbreviations: ECF = extracellular fluid